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Abstract

We consider a controlled Markov chain whose transition probabilities and
initial distribution are parametrized by an unknown parameter § belonging
to some known parameter space ©. There is a one-step reward associated
with each pair of control and the following state of the process. The ob-
jective is to maximize the expected value of the sum of one step rewards
over an infinite horizon. By introducing the Loss associated with a control
scheme, we show that our problem is equivalent to minimizing this Loss.
We define uniformly good adaptive control schemes and restrict attention to
these schemes. We develop a lower bound on the Loss associated with any
uniformly good control scheme. Finally, we construct an adaptive control
scheme whose Loss equals the lower bound, and is therefore optimal.
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1. Introduction

S0

oL,

k3

Consider the following stochastic adaptive control problem: The system is mod-

l'(

elled by a controlled Markov chain with an unknown parameter, i.e.

LRPC
[y

PO{Xn+l = yIXn = IvXﬂ-h-” 1X0a Uvn- .. ,Uo} = P(xay; Unao) (11)

PO
LS

9

where Xo,Us, X1,Uy,. .., Xa,Un, Xn41,... is the chronological sequence of states

o e
S

[y
"

and control actions, and & is an unknown parameter belonging to some known

parameter space O; and .“;‘ o
Ps(Xo = z) = p(z; 6) (1.2) o
3
where § is the same as in (1.1). There is a one-step reward r(X,,U,), associated 3:’.{;:’
with each pair (X,,U,),n 2 0. The objective is to find an adaptive control scheme @
which maximizes, in some sense, the expected value of the sum of one-step rewards x
. ;::',-:
n-— P
E¢J, = Ey }: r(Xn,U,), asn = 00 . (1.3) "'t.-'i\
1=0 =¥

Ty
'.'-' 4

One of the current approaches to stochastic adaptive control problems is the

o \
°
%
"t.:&‘x:-’
‘,\ ‘:N '.& *x

so called “Certainty Equivalent Control with Forcing” (cf [1]). This scheme is

o~

.®
. . . . B Syl "
self-tuning in the Cesaro sense and is therefore also optimal for an average reward Y
‘o
per unit time criterion (cf [1]). The reward criterion described by (1.3) suggests o
KA

I’.

that we need to determine the maximum rate of increase of E4J, as n — co.sten For °
GFA&I :\‘:--

This requirement introduces a notion of optimality that is stronger than the onertas o o
wanced 0 e

suggested by the average reward per unit time criterion used in [1] - (7). For the :eattco /7>
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"
e criterion (1.3) it is no longer clear that the Certainty Equivalent Control with ®
: gt S
% Forcing is optimal. N
" ::E
S The same reward criterion as (1.3) was previously used in 8] for the study "
HY
W of the controlled i.i.d. process problem. This criterion was initially used by Lai "
X .
: and Robbins (9], {10] for the multi-armed bandit problem. Various extensions of
R0
‘:u'.. the Lai and Robbins formulation of the multi-armed bandit problems have been
o reported in {11] and [12]. In this paper we show that the adaptive control problem T
L . : . i
:: of Markov chains can be viewed as bandit problem with Markovian rewards. Such
", a relation provides a convenient way of analyzing the problem, and allows us to '-;;
&5 develop an “efficient” adaptive control scheme. (We shall precisely define what we o
" mean by efficient in Section 3.) ~
' - .
)k LN o™~
>
B 2. The Problem
D -
j 2.1 The System Model

a &
-
'l

2

y Consider a stochastic system described by a controlled Markov chain on the
) -
}_f state space X, with control set U/, transition probability matrix -
LA "k
1
P(u,0) := {P(z,y;u,0)|z,y € X} (2.1) =
> o
f’
“‘ . . . "ge -
g and initial probability mass function <
P p(6) := {p(z:9)|z € X} . (2.2) .
v’
~ )
f.; The parameter 8 is unknown, but belongs to a known set ©. Assume that X', U ..
& o ,’.':
e
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and O are all finite. Further assume that for

‘;',r:' 5 ®
}‘

r,ye X;uel; 0,0 €O, P(z,y;u,0) >0 = P(r,y;u,8') >0 ; (2.3)

%

et 2 4 T | %
Ay
[g
".t "y

&

for every stationary control law g : X — U

2
e

(S
A NCNUREN

P%(6) := {P(z,y;9(z),0)lz,y € X} (2.4)

U

L S
NS
gy

is irreducible and aperiodic for all § € © , and

T
N

p(z;6) >0 forall z€ X and 9 € O . (2.5) Y,
\
B o
°
l Let .::;:}
79(8) := {#%(z; 0)|z € X} (2.6) B
o )
t‘;: "
. . . . e
be the stationary distribution corresponding to P?(#) and let E':‘
. w(8) := 3 ©(z;0)r(z,9()) (2.7)
" €X RN
K
be the mean reward under that stationary distribution. =
v e
, An “adaptive control scheme” « is a sequence of random variables {Un}3%, ::Ej:
o e
s taking values in the set U such that the event {U, = u} belongs to the o-field Nors
o
F. generated by Xo,Up, X1, U1, ..., Uncy, Xa. Let r(X;, U;) represent the one step T
n-1 ~'-'
reward at time i, where r : X x ¥ — R. Further define Jn := Y r(X;,U.) the L
$=0 v
total reward at time n as the sum of the one-step rewards upto time n. R
@
’ Our objective is to find an adaptive control scheme ¥ which maximizes, in some T
’ P
sense, EyJ, as n — oo. We shall clarify this notion of optimality in Section 2.4. To ﬁ‘,'. ,
- ”-'.-.—
e
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W achieve our objective we would like to express approximately EgJ, in terms of the ®

) expected number of times each of the stationary control laws g is used up to time n,

W o L W)
:'“, and the expected one-step reward under the invariant distribution corresponding Y
W
' to each g. For this purpose we need to translate any adaptive control scheme + to "
A ~
2 an equivalent adaptive control scheme 4’ with the following features:
‘N
¢ A
Y Y
(F1) The control scheme +' chooses a stationary control law g, (instead of a control H
o . . Y,
-:_: action U,) at each time n. :.:
N )
i)
L -,
:: (F2) Whenever a fixed but arbitrary stationary control law ¢, chosen by «/, is W
+ -
’ % used, the sequence of states observed in Markovian. Moreover the sequence
% A
; S of states corresponding to the different stationary control laws, chosen by v, n
W are independent conditioned on the initial state. i
N
"J: In Section 2.2 we identify a set of conditions which if satisfied, lead to a control -
" _ =
7o scheme 4’ that has the above features, and we construct such an equivalent control |
o
A scheme. In section 2.3 we define the probability space (', F’, Py) which allows us :':
¢
v
| » 4 - . . .
f to define a sequence of states which for each stationary law g is Markovian, and -
.
D » .,.
A independent of the sequence of states of any other stationary law ¢, conditioned {
-5 e . o
- on all their initial states. Using (©’, F", P;) and 4’ we can define a control problem o ]
" ' o
:'.: that is equivalent to the original one, and we can express Ey3J, in terms of the 7 :
" ) , , v
- expected number of times each of the stationary control laws ¢ is used up to n, -
+ and the expected one-step reward under the invariant distribution corresponding -:' 1
" \I. L
v "
o to each g. Such an expression for EyJ, allows us to precisely define the sense in 1
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which we want to maximize it.
2.2 The Translation Scheme

Lemma 2.1 Given a controlled Markov chain on a finite state space X and with
a finite control set U, for any adaptive control scheme + (as defined earlier) there
exists an “equivalent adaptive control scheme” v’ taking values on the set G :=

{g : X — U} of stationary control laws with the following properties.

(1) 4’ is a sequence of random variables {g,}3%, taking values on the set G such
that the event {g, = g} belongs to the o-field F, generated by X, go, X1, 91,

coyGna1r Xn-
(i1) Un(w) = gn(Xn)(w)  Vn,w.

(i1i) If ny and ng4y are any two successive time instants at which a stationary
control law g (fixed, but arbitrary) is used, i.e. gn, = gn,,, = g and g, #

g, Nk < N < Npyy then X, 4y = X,

(Notice that (i) implies F, = F}.)
Proof (by construction)

Let # X = k and let z'',z%,..., z¥ be a prior (but arbitrary) ordering of z.
Similarly let #4 =l and U = {u',u?,...,u'}. To start off observe X, and then

2

reorder X as z!,z2,...,z* by a left cyclic shift of the prior ordering, such that

z! = X,. Define G§;i = 1,..., k inductively as follows:

5
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g A

Go = {9€G:9(z))=u!, 1< <k}
i-1
G, = {gEQ:g(Ij)=u1,i<j§k}—Ugg; i=2,...,k .

=1

k
Notice that Gj; i = 1,...,k defines a partition of G, i.e. | JGy =G andi # j =

=1

vy gsn Gé = ¢.
1
i Now suppose at time n > 0, i.e. after observing X,, we have a partition

G :i=1,...,k of G with the following five properties:

P1) Gi;i =1,...,k is determined by F,

P2) V1 <i<k Vgeg:, thelasttime upto time n — 1 that the control g was

used (if any) was followed by the state z*.

Let
X, =1z"* for some j,=1,...,k (2.8)

Then,

P3) Vj. <m <k and for any f, : {z!,...,2™} = U there exists a unique

g € U g:; =] gl{z’,...,z'"} = fm

=1
P4) V1 < m < j, there exists a unique f, : {z!,...,2™} = U 3 Vg €

U g:u g'{z‘,...,:"‘} # fm, and

=1

P5) V 1 < m < j, the above found f,’s satisfy f, _, = f, |z, .2m-1)

Also assume that
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P6) g;, 0 < j < n satisfy properties (i), (ii) and (iii) of Lemma 2.1.

We shall now show that we can choose a ¢, satisfying property (P6) on the
basis of F, and construct a new partition G4, ;¢ = 1,...,k satisfying properties
(P1) - (P5) assumed true for time n. Choose g, € GI* (jn as determined by (2.8))
such that

!

gnl{z‘.....xl"“} = f],.-l and gn(zj") = gn(xﬂ) = Uh. (29)

Such a choice is clearly possible by the above induction hypothesis (properties
(P3) & (P4)). By noting the fact that U, is determined by F, = F and by the
induction hypothesis {properties (P1) and (P2) and (P6)) it follows that (P6) is
satisfied for n + 1. Next, let X 41 = z'**! for some jo41 = 1,..., k. If jo41 = Ja
then Gi,, := G& Vi = 1,...,k, and it trivially follows that G, ,,, i = 1,....k
satisfy (P1)-(P5). Else, if jas1 # jn, Gina i= G = {9}, G0N 1= G+ + {ga},
and ¥ i # jnu,jn+1, Gigr := Gi. In this case also it is easy to check that G},

satisfy (P1) & (P2) . To show that G, satisfy (P3)-(P5) consider two cases
Case 1 jn+1 > jn .
-V a1 Sm<k Ug:.“ = Ug:. - {ga} + {90} = UQ:‘ Thus (P3) is
=1 =1 =1
satisfied.

-¥Y 1 <m<j, Ug;',“ = {JG,. Thus (P4) & (P5) are satisfied for
=1

i=1

1 <m< j, and 1 < m < j, respectively
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-V jn <m< .jn+l U g;n.H = U g:’ln - {gn} Consider the fr,n = gnl{tl....,z"‘}-

=1 =1

By the induction hypothesis (P3) it then follows that (P4) is satisfied for

.jn <m < jn+l~

Clearly this construction of f,, also satisfies

Sy = foligtzm=1y ¥V ja <M< ju

and by (2.9) it also follows that

! ’

(old) - (new)

Thus (P5) is satisfied for j, K m < ju41.

Case 2. joiy < Jn

-V jaS<m <k UG = UG — {9} + {9} = UG.. Thus (P3)is
=1 =1

=1

satisfied for j, <m <k

.....

=1 =1

the unique one missing from _J G: (by (2.9) and induction hypothesis (P4),

=1

(P5)) it follows that (P3) is now satisfied for jas1 < m < ja.

-V1<m< jap U Gus1 = |J G, and thus (P4) & (P5) are satisfied.

1=1 1=1 o

N The proof of Lemma 2.1 is now complete (using induction) by checking that ::: :

the induction hypothesis is satisfied at n = 0.
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2.3 Extending the Probability Space

Let Q = (X x U)*™ be the space of all X x U sequences (i.e. sequences of the
type Xo, Up, X1,Uy,...). Give (X x U)> the product o-field F = o((X x U)™),
namely, the smallest o-field such that Xy, Us, X1, Uh, ... are measurable. There is
a unique probability P; on (2, F) such that for all n and all z¢,...,z, in X and

ug,...,uU, in U,

;'{X.-=z.-,U,~=u,-, for i=0,1,...n}

n-1
= p(z0; 0) H P(z, 2415 u,0)
1=0
% TT 120t -y 20) = wi} - (2.10)
1=0

This triple (R, F, Py ) is the minimal underlying probability space required for the

description of the problem we address in this paper.

For purposes of analysis and to capture feature (F2) it is useful to extend this
probability space which we shall now proceed to do as follows: Let G = {g,...,¢%},
and X9 = {z = (29,...,29") : 29' € X}. Let ¥ = (X%)* be the space of all X?
sequences (i.e. sequences of the type X, X;,...). Give (X%)* the producet o-field
F' = o((X%)*), namely, the smallest o-field such that X, X,,... are measurable.
There is a unique probability P; on (€', F7) such that for all n and all z4,z;,...,2Z,
in X4,
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o Pi{Xi=1; for i=0,1,...n} b
P ‘ N
o~ R, y’ ¢’ \
\,‘ H H Iy v Tiss 0) (211) §
\ =1 =0
K
o where f : X4 — XY U {A}, A is an arbitrary element used to augment the state &
:‘ space X for the purposes of analysis, and f is defined as follows: For each z € X .
\l_: ) I v '-‘
:' left cyclically shift {z"...z*} to {z',...,z*} such that z! = z. Consider G}, (from 2
N section 2.2) constructed as before on the ordering {z!,...,z*}. Let h: X — X4 ;3::
n , . A . o
’::" such that if ¢’ € G; then h’(z) = z'. Clearly, k is one-to-one, but not onto. Let
) x.'
e h{X] be the range of A, and A~! : A[X] — & be the inverse of A on its range (A~} oy
‘ is well-defined as A is one-to-one.) Finally, let fly;) = A~' and f(z) = A Vz € -
- .Y
g 3
o — h[X], and py|x = p(6) (defined by (2.2)) and pj(A) = 0. b
e ~
8 Now on this probability space that we have constructed (note that there is no X
"
-' dependence on the adaptive control scheme v so far) we can define the random RS
-\. - ;
; ._ process Xq,Uq, X7,U7,. .. by using the equivalent adaptive control scheme +’. To
- start off let X7 := f(X,). Now given X;,Uy,..., X] choose adaptively g, such 5
\
s that, U7 := gn(X7) and X7, := X735, where T3~ is the number of times the con- o
2 -
‘ :.: trol law g, was used upto time n (in Xo, Uy, ..., X,), and XT"‘+1 is the component *
e of X7, corresponding to ga. It can be easily verified that the random process 2
D 1" s
'i:: Xg,Uq, X7,U7,. .. constructured above has the same distribution (in (', 7, P})) .
.r:‘ ,f‘-.
. as the one given by (Q, F,P;). Note that for X; 3 f(X;) = A the process is <
‘:,E undefined, but that is not important as Py{X,: f(X,) = A} =0.
Dot Using (¥, F’,P; ) and 4' we can now express EyJ, in terms of the expected
A} .
[ 3
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number of times each stationary control law g is used and the expected one-step

reward under the invariant distribution corresponding to each g.

2.4 Analysis of the Reward Criterion

Consider

n-1

Z T‘(X,‘, U.')

-
—

”n—

9€¢

n-1
9€g z€X =0
g€EG z€X

where

TI-1

N4(z,T3)

=0

=0

and

Note that in the extended probability space (0, F',P;) T is a stopping w.r.t. the

increasing family of o-algebras {( \/ F2) \/ F2} where F§ = o(X§, X{,...,X3)

A3
9'#g

and Fg, = \/ Fi.
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Y (X! =12)
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To express EN?(z,T?) in terms of the invariant distribution under g and ET?

5

s

we use the following result:

AT

Lemma 2.2 Let X, X,,... be Markovian with finite state space X, transition

matrix P-irreducible and aperiodic and stationary distribution n. Let F,, denote

1

the o-algebra generated by Xg, Xi,...,Xn. Let G be another o-algebra and A an
event such that A € FovGand {Xo=z}NA= {'2 Aofé;\':::}. Furthermore let G -

be independent of F,, conditioned on the event A. Let T be a stopping of {GV F,} ~n

such that E[r|A] < co. Let o

N(z,7) = 3" 1(X; = 2) =

=0

Then, for some fixed constant K , independent of A,z and 7.

|E[N(z,7)|A] — n(z)E[r|A]| < K (2.14) i~

Proof: Follows from Lemma 2.1 in [11].

Notice that \/ F9 and FY, are independent conditioned on the event A = A
Iec -
' g'#s ' .
{Xo = z},z € X% Moreover A, € \/ FZ C((\V FL) VF) and {X§ = 2
9€g g'ig
9'#g

A

{Xo =z} {Xo =2} C {X3 =<z}

¢ otherwise

ttXo =2} =

( ‘.'.:‘. .

Therefore by Lemma 2.2 it follows that
|Eo[N%(z,T2)|Ag] — n%(z;8) Eo[T2)A)| < K

12
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for some fixed constant K independent of g,z and n.

Thus,

|Eo[N?(z, T2)] - 79(2,0) Eo[T2)| < K (2.15)
From (2.13) and (2.15) it follows that

|Eedn = 3w (0)EeTI| < K' (2.16)
137

where K’ is independent of n and u?(4) is as defined by (2.7). Let ¢*(8) =

arg max(u?(8)) , and for simplicity assume that it is unique for each § € ©. Thus
geg

if we knew the true parameter the control scheme g, = ¢°*(8) gives the optimal

reward (upto a constant) for all n, and for this scheme
|EgJn — nu?"®(9)| < K'.
In the absence of the knowledge of the true parameter it is desirable to approach

this performance as closely as possible. For this purpose we define the Loss asso-

ciated with an adaptive control scheme 7,

La(0) := nu*"®(8) — E4J, (2.17)
By (2.16) it follows that
ILa(6) = 3 (u7®(8) — u°(6))EsT?| < const. (2.18)
¢
ahe° ()

Maximizing EyJ, is thus equivalent to minimizing the Loss. More precisely we want

to minimize the rate at which the Loss increases with n (e.g. finite, logrithmic,
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' linear etc.). Thus, this is a stronger criterion for optimality than the average ‘_'i
"
:: reward per unit time criterion (used in [1] - [7]) which only requires the Loss to be i N
)
. . e by
: o(n). In view of (2.18) the above problem is reduced to one of minimizing the rate %
) {]
D)
! at which EyTY increases for g € G, g # ¢°(6). 3
. Note that it is impossible to minimize L,(4) uniformly over all parameters .
' 6 € ©. For example the stationary control scheme g, = ¢g°(8) for all n, will have l'-_'.j 3
X a finite Loss where the true parameter is §. However, when the true parameter -
) -
' is @' such that ¢g*(6’) # ¢°(#), then this scheme will have a Loss proportional to ! )
;' n. Having made this observation we call a scheme “uniformly good” if for every ;:: :
I, parameter 6 € © N 3
; L.(8) = o(n®) for every a > 0 (2.19) N
10 ™
) Such schemes do not allow the Loss to increase very rapidly for any 8§ € 8. We 4
) restrict our attention to the class of uniformly good schemes and consider any Ny
3 o
j others as uninteresting. :
3 -
| 3. A Lower Bound on the Loss
»
4
: In this section we obtain a lower bound on the Loss L,.(8) for certain values -
3 AN
‘ of the parameter 8 € ©. Before we present the bound we introduce the necessary N
notation. Let '_::
: B(8) = {¢'€©:P ) = P"O(0) and g"(#) #4°(0)) oy
-, \ .:
: G = G—{g"(0)} .
.:: 0
14 !
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{(a’,gGGa):a’ZO,Z a9=1} , (3.1) ,,.'-?ﬂ-

9€C,
ds(g) := (u*"®(8) — u*(6)) and e

. .- ’
9(z;0) P9(z,y;0)lo M ¥
g

108, 9) .
TEX yeX Pg(z’ y!al)

u
.‘_:"." }\'.l' !

Note that 19(8,8') is just the expectation with respect to the invariant measure of

.
.

i &8 Y '-."

[ ]
T

‘-
V.

P9(8) of the Kulback Liebler numbers between the individual rows of P9(8) and

rA®

P9(#') thought of as probability distributions on X.

.,.
X Ay
P

The bound is now presented in the form of Theorem 3.1 below.

b

hY
AT )

Theorem 3.1 Let 8 € © be such that B(8) is non-empty. Then for any uniformly

A
s
~

»
&

good control scheme ¢, under the parameter 4,

-
W

é‘:-:
¥

2
Tu NG
il

[

logn 1
. g /
14+2p max mi Lo 1°(6,0)
a€As #'€B(8) T, alds(g)

o
-

1) nl‘l_.r{.lopa Z nga(g)< =0Vp>0.
Co

ve®
‘-"-.’ 'y

~
2
Y

(3.2)

v
.
P AN

L]

's
/
2 7

4o

Consequently,

’I’I“
LY

T
1-{'-

'.l‘f LA

| 9
2) limint L2(9) > min max Lo Xdilg)
N—0O losn a€Ae 9'€B(8) Zagjg(o’g’)
Co

2
Z

l,

(3.3)

l' ¢

h
2
P4

Proof

The proof can easily be obtained from that of Theorem 3.1 of (8] by subsituting
g for u and Gy for Uy and by invoking the ergodic theorem instead of the strong

law of large numbers. a
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Note that we do not have a lower bound for those values of 8 for which B(6)
is emptyv. In view of this observation and the above lower bound we call a scheme
“efficient™ if

L.(6) g, 'ds(9)

limsup min max if B(#) is non-empty

n—oo logn T a€As ¢'€B(8) Za’]’(G,O')
Co

L.(9) 0o if B(0) is empty (3.4)

4. The Control Scheme

4.1 Preliminaries

Let M(? be the unit simplex in R'*" identified with the space of probability
measures on X2.
Let

ve(z,y) :=7%(z;0) P(z,y;8); z,y€X (4.1)

Then v§ = {Vi(z,y) : z,y € X} € M. Since © and G are finite v§ take on only
a finite number of points in M(?). Therefore it is possible to find an ¢ > 0 such for

all values of v§ we can identify e-neighborhoods (“e-nbd of vj") of the type:

enbd(vf) := {v € M? : max |v(z,y) - ¥j(z,y)| < ¢} (4.2)
.y

which are disjoint for distinct values of vj.
Also define
S(8) := {8 € ©: PT"®(§') = P*""(8) and ¢°(¢') = ¢°(8)} (4.3)

16
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This is the set of parameters for which the optimal control laws are the same as
that for 8, and the transition probabilities under the optimal control law are also
identical. Let

G(S(8)) = {g: P*(8') # P*(6), ¢ € S(6)}. (4.4)

Recall from Section 3 that
B(8) :={# €0 : P"O(g) = P*""(8) and ¢"(8') # ¢"(8)} . (4.5)
This is the set of parameters for which the optimal control laws are better than

the optim:l control law for 8, and the transition probabilities under the optimal

control law for @ are identical.

,...
ORI,
AT
s <t
".l‘l".‘
. R

a

Let

L)

L]
v
A A

Vs\

a(f) = {o?(0) : g € Gs} (4.6)

e

O
>

’
h

:\ TN
\;{};&’\

o

'
}N

achieve the minimum in the lower bound for the Loss in (3.2), where Gy = G —

{9°(8)} and

" "' ﬂ
s

P
= 'I "
R

2ELL
’

TS, = Eg[mf{n Z IIX,. = Io}'Xo = .‘L'Q] , (47)

059 —

L

)y e
ra

P

be the expected reccurrence time of the state zo under the control law g . On

PP
Y S Y

L4

(4

the basis of these define,

MMM
’ 1)
7

___o(0)/T,,
T Toeoe (0)/ Ty

3(6) = {B#°(8) : g € Gy} with 3°(9)
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! 4.2 Description of the Control Scheme =k
L -ﬁ‘ »
" '.
- Let zo € X be an arbitrary but fixed state. Define the {F, = o(X,, U, X1,..., L AN
i
| X,_1.0-1, X )} stopping times 7o, 71,... by 7, = inf{t > 11| X, = 20},m >
A |
. 1,and o = inf{t|X. = zo}. The control scheme we construct chooses a stationary :\
q
control law at times 0,7, 71, ... adaptively on the basis of all the past observations IQ o
) > '_
and past actions, and use this control law till 7 — 1,7, — 1,7 — 1,... respectively. »
4 That is, over each recurrence interval marked by the state zo we use the same :; by
3 Aoy
i control law which is chosen adaptively at the beginning of that block. With this <l
1] ;\. L]
in mind we now describe how the choice of control laws is made at the beginning "
a
<8 of each block. From now on we shall refer to the actual time as time and the R
y :.r
y reccurrence points as instances. Initially, i.e. at t = 0, choose a fixed but arbitrary \
‘ S
4 control law go and use it till time 75 — 1. Then to start off, use each of the control L
. Ay
: laws g € G once each. From then at each recurrrence point, compute the empirical
. A
N pair measure p? := {p%(z,y)|z,y € X} € M@ corresponding toeach g€ G as i
1 n-1 '3 i
: F;’,(x,y) = qu -7 ‘2 l{gi =9, Xi = I»Xi+l = y} (49) N :
. o
': where n is the actual time oA
. Define the conditions -
C1(8): p% € e-nbd (v§) V g € G and B(8) is empty "
- C2(9): p2 € e-nbd (v§) Vg € G and B(f) is non-empty.
Y C3: there does not exist & € © such that p € e-nbd (v]) Vg €G. 5

18




(Note that C3 = (| (C1(6) UC2(6))) ). Proceed as follows. ®
9€0 ; o

1) If C1(8) is satisfied for some 6 € © then use ¢*(4). s

2) If C2(8) is satisfied for some § € O then do the following: Maintain a count of

e
a4

the number of instances condition C2(8) is satisfied. Of these, for the first instance

5

LN
r 'l‘.
""\.‘Fn.'q. [y

rE
@

1 choose among those control laws g € Gy randomly with probabilities 39(8). Refer

[P R S
l‘~

to this process as “randomization”. For those instances when this count is even

(call this situation C2(8) a) use g*(6). For other instances when the count is odd

7

' (call this situation C2(8) b) compute the likelihood ratio

iy The
R o’

Tt pol (X7, X7, 6) 2

= Apr = i ;
' An(6) := Arz(6) D, Q) P X1, )

Wiy T T 1% N
\ AL
..5':‘-’ “

»

of 6 vs B(6), where X, g3, Trow19Tr-1) X7y 18 the sequence of pairs of control

"'l'.‘

laws used and states observed upto time n when “randomization” is done with :
B(8). If An > Kn41 (say C2(0)b1), where K, = n(log n)? for some fixed p > 1, the :
use g°(8). If A, < Ka4 (say C2(6)b2) then do the following: Maintain a count :"':
f of the number of instances this condition (C2(6)2) is satisfied. If this count is a :‘-E
‘ perfect square (say C2(6)b2a) then use round robin amongst g € G(5(8)). If this e

count is not a perfect square (say C2(8)b2b) then do “randomization™ using 3(9).

3) If C3 is satisfied then use round-robin amongst g € G. AN,

——Y
4 A
.
‘. v, 4
a
LA

vvv
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4.3 Upper Bound on the Loss

N
‘ In this section we derive an upper bound on the Loss associated with the
A adaptive control scheme v* constructed in Section 4.2. The bound is given by the
main Theorem 4.2. Lemmas 4.1, 4.2, 4.3 and Theorem 4.1 are needed for the proof
s of the main theorem.
Lemma 4.1: Let X,, X,,... be Markovian with finite state space X, transition
' matrix P, invariant distribution =, and initial distribution p. Let M(® be the

X2

unit simplex on R'*"" identified with the space of probability measures on X'?, and

let K C M®?, closed, such that 7P & K. Let p, := {pa(z,y)|z,y € X} where
] n-1

pn(z,y) -lz 1{Xi=12,X;41 =y}. Then

' n =0
‘ (i) P(pn € K) < Ae™®" for alln > 1 for some positive constants A, a.
Let N := 2 1(pn € K). Then
(i) EN < o0
y Let L := sup{n > 1|{p, € K} . Then
' (iii) EL < oo

Proof:

Part (i) follows from the theory of large deviations. See [14], Problem 1X.6.12.

o
EN = 3 P(pa€K)
’ n=1
t o0
) < Z Ae— "
, n=}
; 20
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f"f:'.

P

EL = EY 1(3i2n,p€K)
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AN
b
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< oo  which proves (iii), a
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Lemma 4.2: Let S, = X; +... + X, where X,, X;,... are i.i.d.,, EX; > 0 and

e,
AN
L J

3y
2

let N =Y 1(S,<0), L=} l(gx'i; St £0). Then the following are equivalent:

n=1 n=1

ot
L |

LRy

Py
X0,

(a) E(|X1]* 1(X1 £0)) < oo.

vy
.
7

LNLY

o8

(b) EN < oo.

[

'n;-{'- ) !
e

(EL < 00.

i

[/
[

l'
s

&
)
~
~
~
)
.l
h )

- o,
)
[/

Proof: See Hogan [15).

Lemma 4.3: Let X;, X;,... beiid. Let f' be a real valued Borel function such
that 0 < Efi(X,) < 00, € I, finite. Let 5% = fi(X,) + f(Xa)... 4 f(Xa), L} =
) 1(§§1f Si<A),and Ly = max Ly I E(If{(X0)? 1{f'(X1) < 0)) < oo for all
n=1 zn '

1 €1, then

limsup EL4 < L

A= AT min(Ef(X))) (4.10)

21 =

Y
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Proof: For ¢ > 0, and for any fixed : € [

. A(l +¢) ; |
Los Ty 1 (4.11)
where
VT . tEf(Xy)
Bl )
Consider the 1.1.d. r.v.’s
: Efi(X
= riixy - 200
We have,
4 . ' Ef
EMM&sMg#[ ( )]@mm{&%

IN

2E {|f(X)PLF (X))

i 2
+2E {lf'(ml’ 1 (0 < f"(Xl) < E—{:(:?)} +2 (%fiﬁ)

< o0 .

Then, by Lemma 4.2 it follows that FL' < co.

Therefore

E(maxL)<E(ZL)=EEL‘=k(s)<oo , (4.13)

el €l

for some constant k(¢) independent of A.

Now,

1€ 1€ Ef(Xy)
A(l +¢) ;
S mnEFxy Tt .

; .l‘A -. . -'

2P
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By (4.11) and (4.12) it follows that

A(l +¢)

EL,< ——— _
4= min(Ef(X1))

+ k(e)

limsu ELa < 1+e
Amo’ A " min(Ef (X))

By letting € — 0 we get the desired result. a

Theorem 4.1 Let § € © be such that B(6) is non-empty. Then,

1
2 BT, 19,6
Co
(4.15)

(1) limsup [Eo [f: 1(Arn(6) < Km)] / log ] <

n—oo m=1

ml
'€ B(9)

L for ¢’ € B(6).

n+l

(2)  Pp{Xi(8) > Kn4y forsome 1 <i<n} <

(4.16)
Proof:

Let X, X],... be the sequence of observed states when “randomization” is used

with a(f). Let X* = [ X", with the Borel o-algebra of the discrete topology,
21
i.e. all subsets are measurable. The process {X;}:>o allows us to define X* valued

- random variables By, B;,... called blocks as follows: Define the {¥;} stopping

times 7.,k > 1 by

T = inf{t > 71| X{ = X§ = 2o}
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with 7o = 0. (Note that e < o0 a.s.). Then 4 '
e
B"_( "h 1’X:h 1+ "X:k) _‘:
N
3,
Let B, = (Bk,g«). Since the same control law is used over the entire block, and the p;
choice of the specific law for each block is made by independent randomizations at .;’:
the beginning of the block it can be easily shown that {B} are i.i.d. Y
e :'.
Let '
(X7 XTI ,1:0)... PO(XT | X0 2 Y
f"'(Bk) 1og P ( Th—1?" Tha ‘+11 ) ( 1-.-1) L ’) A:
Pg.(x‘rk 1? T...|+l’0) Pg‘( T. 17Xr‘10) %
Then i g
¢
: (2l PIX,, Xii6) e 3
Eo(f”(BL)|Xo = zo] = 9(8)E, lo 2D Xy =< [
o(f” (B Xo of %,:ﬂ (6)Eq .‘=¥~:—n g P9(X¢,X.+1;9’)‘ 0 0 A :
PI(z,y;0 3
= Y FO)E | Y Nz, y,Bk)logF,giy—')'lXo = 10} NIN
Co EXT4 ( o
Pi(z,y; 0 :
= TEO) T e@0PE 0T ke g x}
T y€X = )
= }:5'(0 )75, 19(8,8") -
and - :
.\: .
&
Esl(f*(BY)1(f* (B}) < 0)|Xo = o) =
5l
= 2B OE(f* ((Br )L (B, 9) < 0)]Xo = o] -
Co o~ N
P?(By; 0 Xo = z0) \ NN
= 320 P(By;0|Xo =1z (lo .
; ( )Bkgyo ( k ' 0 0) ng(Bho'IXO — 1’0) . :\:
L
i
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9(Be; 0| Xo = z0)
11 <
1(° P3(Be;01Xo = 20) = °
P9(By: 8 Xo = zo)
= 3(0 P{(B; 8\ Xy =z
go: a.ezx k1% 0) P3(By; 0’| Xo = z0)

. (lo PS(By; 61X, = Io)) ) (P’(Bk§9|xo = Zo) <1
8 Pe(Br0[Xo = 10))  \P(By 0 Xo = 70) -

Z PI(By; 0| Xo = J:o)i2 as r(logz)? < iz on0<z<1
BieX® € ¢ -

I
™
R

Thus by Lemma 4.3 we have the desired result (i).
To prove (ii) note that

{Ai(6) > kn4y forsome 1 <t < n}
Lo, Tl gy
o'eB(s) o P (X7, X[ 0)
{“‘ Py (X7, XTI, 1;0)
t=0 P9t (X7 X71156")

> knyy forsome 1 <: < n}

N

> kny1 forsome 1 <1< n}

i-1 P X"X ,8
for any §' € B(6), and {H Psi ((X;'X;: 6”))

} is a F; martingale
21

under ¢ with mean 1.
Thus the result follows by the submartingale inequality (see [13], pg 243). o

Theorem 4.2: Under the adaptive control scheme ¢°, for g # ¢*(9)

(i) EsT! < Za:f()g)pw 7 +o0o(l)| logn if B(#) is non-empty
0'58(0)
ET! < o if B(8) is empty . (4.17)
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Consequently

> a®(0) de(g)

.. Ce . .
(i) L.(8) < 9'123()5) E 2O 0.9) +0(1)| logn if B(8) is non-empty
Co

L.(8) < if B(8) is empty (4.18)

where a(8) = {a9(8) : g € Gy} is defined by (4.6).

Proof: Asin Section 4.2 define the { F;(= o(Xo, Uo, X1, ..., X¢-1,Ut-1, Xt))} stop-
ping times 7o, 7y,... by 7 := inf{t > Tm_1| X, = 7o} with 7o = inf{n|X, = zo}.
Then 7, < oo a.s.. Then for any n > 0, any g € Gy we have

T =9

< Y Ugn=9)Tin—7) +7

1, <n

I

since the choice of ¢’s is only made at the stopping times 7;. So

E, Z 1(gr, = g)(Tis1 — T)1(7i < n) + Ey7o

E;T; <
=0
- iEa[Eo[l(gn = g)l(ri < n)(ris1 — 7)|F]] + EoTo
= S Ell(g. = (7 < WE(rirs = T + Evro
=0

= Y Esl(g-, = 9)1(ri < )T, ] + Eso
oo

= T0.E0 3 1g. =9)+Eomi .

i dn

Let us now examine the term E 1(G; = g), where G, = g,..

i:r,<n
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! > UGi=g)
T nrndn
1N = 14+ Y UGi=yg)

':'- 124:r,<n

= 14+ Y. 1{Gi=g, C1(8')is satisfied at stage i for some ¢’ € O}
I ! t2d:n<n
. + 3 1{Gi=g, C2(#') is satisfied at stage i for some 6’ € O}
i2d:ri<n

";:: + 3. 1{Gi=g, C3is satisfied at stage i}

P i2d:r<n
y .. = 1+ Term 1+ Term2 + Term3 (say), (4.19)
N
B~
o "
‘
: o where C1(8'), C2(¢') and C3 are defined in Section 4.2 and d is the cardinality
g

of the set G of stationary controls. Let us now examine each term separately.

o Defining £9 by
2
N
N -

L7 := sup {p? & e-nbd(v3)} . (4.20)

Ti>1

AR

and noting that E3£9 < oo by Lemma 4.1(ii), we get

>

. Term 3 < ¥,¢p L9, thus,

, s

;R EqTerm3< Y EjLf < oo , (4.21)
~ 9€G

f = and Term 1 < L9, thus,

e Eg Term 1 < Epl? < oo . (4.22)
’

v &

L/ Term2 = Y. 1{Gi=g, C2(#) is satisfied at stage i for some

- }' 12d:r,<n
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8’ € O such that v3 ¥ # ")} K

+ S 1{Gi =g, C2(#)is satisfied at stage i for some

1>2d:ir,<n 'y

&
¢’ € O such that § € B(¢')} v
b
+ Z 1{G; = g, C2(9') is satisfied at stage : for some o
1>d:r,<n N
8 € © such that 8 € S(6')} -
+ Y. 1{Gi=g, C2(0) is satisfied at stage i} . o
12d:r,<n -
= Term 2a + Term2b + Term2c + Term2d (say) . (4.23) o)
~
v
Next we upper bound each of terms 2a - 2d separately. .
e
2
W
Term 2a = > Y. UG = g,C2(f)is satisfied at stage ¢} "
9':B(8') is empty and 12d:7,<n PE :
L9780 4, 9°(8") .
e ¢ RN
AN
< > 1+ Z 1{G; = g°(¢'),C2(¢’) is satisfied at stage i} RN
9’:B(8') is not empty and i2dir;<n S
L) 4, 8% (0 2
o » bl N
< (L9 4 1) (4.24) T
9':B(8') is not empty and K
VT 4,9°(0" .
o [ ] ~
The first of the inequalities of (4.24) holds because under C2(8'), g*(8’) is chosen T
on all the even instances, therefore, on at least as many instances as any other '
control minus one. The second of the inequalities of (4.24) holds because the : -
sum on the left hand side counts a subset of the times when ¢*(¢’) is used and N
’ ‘...
pn(g°(8')) € e-nbd (vg ( )) where @ is the true parameter. Y
WY
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g By Lemma 4.1(ii) it follows that "
. ¢
.'_
. Eg Term 2a < 3 1+ E £7®)) <o (4.25) ’e]
::'i 6':B(8") is empty,and <]
e¥ u:,(9)¢y:\9) 'g
-
Im L
B .
) w
Term 2b < ) Y"  {C2(8) is satisifed at stage i} N
N 9".0€B(0") i2di7i<n N
- < 2[1 + 5 1{C2AB)bis satisfied at stage i}] 3
;. 9:6€B(9') d:r<n
~
~ = 3 2[1 + > 1{C2(6')b1 is satisfied at stage i}
6:6€B(6’) i2diri<n
)
WG + Y 1{C2(6')b2 is satisfied at stage z}] )
' 12d:7,<n
: < T i+ T 1A > Ka)
o~ 8:0€8(6") i>d:ri<n

+ Y 1{C2(6')b2 is satisfied at stage 1}]

t i2dir,<n

T I Xy )2,

> 2[1+Z 1{A,(8) > K, for some j < i — 1} :
. 8.0€B(6") i=d S
e %
‘ + Y. 1{C2(6)b2 is satisfied at stage i}}4.26) ;}.
i2d:r,<n 2
" L
’ The first of the inequalities of (4.26) results by removing the condition G; = g. o
: 3‘_ The second one results by observing that the total number of time instants that ::
. ’:
"~ C2(0’) is satisfied is upperbounded by twice the odd instants that C2(#') holds, )
o and by noting that the first time we randomize and the other odd times we call :‘..;‘
- C2(6')b. The third inequality results because {C2(8')b2 is satisfied at stage 1}
., .
implies {A,,(¢) > K11} ’.;
A\ S
o ':I
- Consider now the term Y 1{C2(8")b2 is satisfied at stage i}. o
. i2d:ri<n .;
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Y 1{C2(8')b2 is satisfied at stage i}

12d:7,<n

= ) 1{C2(¢)b2ais satisfied at stagei} + 5. 1{C2(#')b2bis satisfied at stage i}

124, <n 12d:r,<n

< 142 > 1{C2(6')b2b s satisfied at stage i}

12d:r,<n

= 1+2 Z 1{C2(8')b2b is satisfied at stage 7; of the number of instances

1>2d:7,<n
that C2(8')b2b has been satisfied so far, the fraction of instances

that ¢’ is chosen € (39 (') —¢, B9 (8) + ¢€)}
+2 ) 1{C2(6')b2bis satisfied at stage i;of the number of instances

12d:r,<n
that C2(6)b2b has been satisfied so far, the fraction of instances

that ¢’ is chosen ¢ (3% (6') — ¢, 8% (6') + ¢€)}

< 142 f: 1{pi(¢') & e-nbd (v§') for some i > (37 (8') - €);}

=1

+23_ 1{of j the fraction of instances ¢’ is chosen ¢ (BY(8)— e, 57 (8)+€)}  (4.27)

J=1
where g’ € Gy is such that v§ # vg.

The first of the inequalities of (4.27) results by observing that the number of
instances when condition C2(8')b2a is satisfied (i.e. the count of the number of
instances C2(6')b2 is satisfied is a perfect square) is upper bounded by the number
of instances when condition C2(8')b2b is satisfied plus one. Consider now changing
the index of summation to the instances when randomization is done. Then the
condition C2(#')b2b along with the condition that the fraction of instances that ¢’
is chosen € (39'(6') — ¢, 37 (8') + ¢) at stage 1, imply that p,(¢') € e-nbd (vi ‘or

some ¢ > (39" (6') —€)j. By extending the summation to infinity together with the

30
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above observation establishes the last of the inequalities of (4.27).
Thus, by Lemma 4.1(i) and (4.16) it follows that
EsTerm2b < 3 2[1 + 3 (i(logi)?)™ +1
6':80€B(8") =d
+23 Y ATt +2 ZAge”“”]
1=1 0>(09'(8))-¢)5 =1
< 00 (4.28)
where Ay, a,, Az, a, > 0 are some constants.
Term2c = ) Y. {G.=g, C2(#)is satisfied at stage i}
8'.6€S5(9') 12d:7,<n
< S 1+ Y 1{Gi=g, C2(8)b2 is satisfied at stage z}J
8:0€S(9") 12d:n<n
< 3 1+ Y 1{C2(8')b2 is satisfied at stage i}
6:6€S(8") | 12d:r,<n
[ o0
< Y [1+P2+ Y 1{p(¢') & enbd (v§)}(2j + 1)1’] (4.29)
6:9€s(0") | )=l

where ¢’ € G(S(6")) is such that l/g' # uf,’,' and # G(5(8)) = L.

The first inequality of (4.29) results by noting that since 8 € S(¢'), g # ¢°(¢) =
g°(0) can be chosen only when condition C2(8')b2 is satisfied, or at the first instance
when C2(#’) is true. The second inequality resuits by removing the requirement
G = g. The third inequality results by upperbounding the number of instances
condition C2(8')b2 is satisfied. This can be achieved as follows: First restrict
attention to those instances that are perfect squares and the control ¢’ is used. At

these instances since C2(8') is satisfied p,(g9’') € e-nbd (uﬁ,’,'), thus, by the choice
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v
¢
:: <
. of g’ € G(5(8")),pa(g’) & €-nbd (ugl)). Consider the sum of the intervals between i
the above instances. (Note that the length of the ;' interval is upperbounded by
3 ~
\ [(j +1)* = j3* = (2j + 1)I*) Then the number of instances condition C2(6')62 R
] is satisfied cannot exceed this sum. Finally, the inequality results by changing the ~
5 summation index to all the times when ¢’ is used and upperbounding the interval ‘ h
P Y
s following the time p,(g') € e-nbd (v§ ) by (2j + 1)i2. O
5 Again, by using Lemma 4.1(1) we get :{; ..
: -,ﬂ ‘
v Es Term 2¢ < Z 1+ 2+ ZAe'“j (27 + 1) <0 (4.30) B
§'-8€S(8") 1=1 Mo
Now if B(8) is empty then, -
v
b :_"
» Term 2d =0 (4.31) Ty
; o
¢
Otherwise, D
O
Term2d = Z 1{G: = g, C2(8) is satisfied at stage i} -~ :
12d:1,<n S
< 14 Z 1{G; = g, C2(0)b2 is satisifed at stage ¢} A :
12d:ri<n S
= 14+ Z 1{G, = g, C2(0)b2a is satisfied at stage i} 2
N 12d:ri<n ::' ,
N + Y. 1{G.,=g, C2(0)b2bis satisfied at stage i} |
. i2dir,<n
< 24 ). 1{Gi=g, C2(6)b2bis satisfied at stage i} e
i2dir,<n st
1/2
+ ( 3" 1{C2(8)b2b is satisfied at sta.gei}) (4.32)
12d:n,<n
The first of the inequalities of (4.32) is obtained by noting g # ¢*(8) can be chosen
only at the first instance when C2(6) is satisfied (in which case randomization is
(
32 -
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‘ ! done) or when C2(#)b2 is satisfied. The last of the inequalities of (4.32) results ’
because the number of instances condition C2(6)b2a is satisfied is upperbounded :
L
2 by one plus the square root of the number of instances C2(8)b2b is satisfied.
g To upperbound Ey Term 2d we use (4.32), Jensen’s inequality and the following
N
R fact: At each instance : when condition C2(8)b2b is satisfied, the choice of the
-
X control law G; € Gy is made by an independent randomization 3(8). Then,
X EsTerm2d < 2+ 3 Py{C2(8)b2bis satisfied at stage i} - 57(6)
hl i>dim,<n
. 1/2
IN .
" + ( Z Py {C2(6)b2b is satisfied at stage z})
' i>d:ir,<n
- < 24 5°(0) Eg[sup{l < i < nf|Ai(f) < Ko }]
’ + (Ea[sup{l < k < n|A(8) < Knyr}))V? (4.33)
Using (4.15) we get N
) et
'S ‘o
- . £9(0)
- limsup Ey Term 2d/logn < — . rarrrarmdl (4.34) o
W T PO
n E
v Coml ning (4.19), (4.21), (4.22), (4.23), (4.25), (4.28), (4.30), (4.31) and (4.34) "
o
:::: we get (4..7). (4.18) follows easily from (4.17) and (2.18). E::
=4 ’\
" o 3
¥ 5. Conclusions
ol !.
i‘ In this paper we considered the problem of adaptive control of Markov Chains. :
. The optimality criterion used, namely minimizing the rate at which the Loss in-
: ;
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creases i1s stronger than the average reward per unit time criterion. Multi-armed
bandit problems with “Loss” as the optimality criterion is one class of stochastic
adaptive control problems that has previously been analyzed. Therefore one way

to proceed with our problem is to relate it to the multi-armed bandit problem, like

.

was done in [8] for the controlled i.i.d. process problem. The translation scheme
and the extended probability space are crucial in allowing us to view the adap-
tive control of Markov chains as a multi-armed bandit problem. The stationary
control laws correspond to the “arms”, and the sequence of states observed when
any particular stationary control law is used are Markovian. The formulation then s
resembles that of the multi-armed bandit problem in (11}, part II. One very impor-
tant difference between our problem and that of [11] is that the parametrization of
the “arms” in our problem is not independent. This difference is reflected in the
lower bound on the Loss we obtain in Section 3, and also needs to be kept in mind
when designing an optimal scheme like the one of Section 4. The control scheme
presented in Section 4 has an intuitively appealing structure as it clearly specifies
the conditions under which there is either only identification, or only control, or

identification and control, and treats each one of these conditions optimally. ol

ol
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